DESIGN CALCULATION OF (G+IV) STORIED RESIDENTIAL BUILDING AT PRE.

 NO. -131/2B, BAKRAHAT ROAD, IN WARD NO. - 144, BOROUGH NO. - XVI, UNDER K.M.C., [JOKA UNIT], KOLKATA
Relevant codes used are :-

(1) I.S. - 456-2000
(2) S.P.- 16-1980

Assumption taken in design :-
(1) Grade of conc. Used - M20
(2) Grade of steel used - Fe- 500
(3) Bearing capacity of soil - As per soil report.
(4) Design based on:-
(a) Working stress method for slab, footing, \& column.
(b) Limit stress method for beam.
(5) Calculation of loading :-
(A) Roof load :-
(a) D.L. of roof slab $=0.1 \times 2500=250 \mathrm{Kg} / \mathrm{sq} \mathrm{m}$
(b) D.L. of C.P.
$=30 \mathrm{Kg} / \mathrm{sq} \mathrm{m}$
(c) D.L. of roof treatment
$=160 \mathrm{Kg} / \mathrm{sq} \mathrm{m}$
(d) Live load

$$
=150 \mathrm{Kg} / \mathrm{sq} \mathrm{~m}
$$

$$
\text { Total }=590 \mathrm{Kg} / \mathrm{sq} \mathrm{~m}
$$

(B) Floor load :-
(a) D.L. of floor slab $=250 \mathrm{Kg} / \mathrm{sq} \mathrm{m}$
(b) D.L. of C.P. $\quad=30 \mathrm{Kg} / \mathrm{sq} \mathrm{m}$
(c) D.L. of F.F. $=120 \mathrm{Kg} / \mathrm{sq} \mathrm{m}$
(d) Live Load $\quad=200 \mathrm{Kg} / \mathrm{sq} \mathrm{m}$

$$
\text { Total }=600 \mathrm{Kg} / \mathrm{sq} \mathrm{~m}
$$

Design of R.C.C. slab :-

Max. shorter span $=3225 \mathrm{~mm}$.
Span to eff. Depth ratio $=26$
Using 0.2% steel, 'd' reqd. $=3225 /(26 \times 1.6)=78 \mathrm{~mm}$.
'D' reqd. $=(78+19)=97 \mathrm{~mm}$.
Let us provide overall depth $=110 \mathrm{~mm}$.
$' \mathrm{~d}$ ' $=(110-19)=91 \mathrm{~mm}$.

Panel Mkd.	Dimensions	Ly/Lx	End conditions	Moment co-efficient			
			αx	αy	αx^{\prime}	αy^{\prime}	
P1	4300×3200	1.34	Two adjacent edges discont.	0.049	0.035	0.065	0.047
P2	4675×3025	1.54	One long edge discont.	0.051	0.028	0.067	0.037

$W=0.6 \mathrm{t} / \mathrm{sq} \mathrm{m}$.

Panel	$M=(L x)^{2} . W . \alpha$			Ast $=[M /(\sigma s t . j . d)] \times 10^{7}$ in sq m				
Mkd.	Mx	My	Mx	My'	Astx	Asty	Astx'	Asty'
P1	0.301	0.215	0.400	0.289	176	126	234	169
P2	0.280	0.154	0.368	0.203	164	090	215	119

Spacing reqd. (mm.)				Spacing providing (mm.)			
Sx	Sy	Sx'	Sy' $^{\prime}$	Sx1	Sy1	Sx1'	Sy1'
284	396	213	295	240	240	210	240
304	555	232	420	240	240	230	240

Spacing $=($ Area of each bar $\times 1000$)/ Ast
Max. spacing $=3 d=3 x 81=243 \mathrm{~mm}$ say 240 mm .

Load chart : -

Col. Mkd.	Load in ' t '	Group
C01	39.94	IV
C02	63.06	II
C03	19.32	V
C04	18.18	V
C05	56.95	II
C06	35.56	IV
C07	82.26	I
C08	78.78	I
C09	53.18	III
C10	57.03	II
C11	54.55	III
C12	47.50	III
C13	29.72	V
C14	49.00	III
C15	77.26	I
C16	77.16	I
C17	33.04	IV
C18	26.43	V
C19	31.38	V
C20	64.80	II
C21	78.86	I
C22	59.16	II
C23	32.20	V
C24	42.53	IV
C25	60.44	II
C26	65.07	II
C27	57.68	II
C28	43.36	IV
C29	29.46	V
C30	52.35	III
C31	53.31	III
C32	50.87	III
C33	29.46	V

Design of R.C.C. column (Gr.- I)
$\mathrm{P}=82.86 \mathrm{t}$.
Considering col. Size $=250 \times 450 \mathrm{~mm}$.
$\mathrm{L}=3.775 \mathrm{~m}$.

Leff $=0.65 \times 3.775=2.454 \mathrm{~m}$.
Leff/b = 9.815 [Hence short col.]
Now, $82.86 \times 10^{4}=5(250 \times 450-A s c)+190$ Asc
Asc $=1439 \mathrm{sq} \mathrm{mm}$.
As per I.S. Code, minimum reinforcement $=0.8 \%=900 \mathrm{sq} \mathrm{mm}$.
Considering seismic \& wind load, let us provide column size 250×450 with $14-16$ tor. as longitudinal bars with 10 tor.-4L-lateral ties @ 175 mm c/c.

Design of R.C.C. column (Gr.- II)

$\mathrm{P}=65.07 \mathrm{t}$.
Considering col. Size $=250 \times 400 \mathrm{~mm}$.
Now, $65.07 \times 10^{4}=5(250 \times 400-$ Asc $)+190$ Asc
Asc $=815 \mathrm{sq} \mathrm{mm}$.
As per I.S. Code, minimum reinforcement $=0.8 \%=800 \mathrm{sq} \mathrm{mm}$.
Considering seismic \& wind load, let us provide column size 250×400 with 10-16 tor. as longitudinal bars with 8 tor.-4L-lateral ties @ 175 mm c/c.

Design of R.C.C. column (Gr.- III)

$\mathrm{P}=54.55 \mathrm{t}$.
Considering col. Size $=250 \times 350 \mathrm{~mm}$.
Now, $54.55 \times 10^{4}=5(250 \times 350-$ Asc $)+190$ Asc
Asc $=584 \mathrm{sq} \mathrm{mm}$.
As per I.S. Code, minimum reinforcement $=0.8 \%=700 \mathrm{sq} \mathrm{mm}$.
Considering seismic \& wind load, let us provide column size 250×400 with $8-16$ tor. as longitudinal bars with 8 tor.-4L-lateral ties @ 175 mm c/c.

Design of R.C.C. pile cap (Gr.- I):-

Total load , $\mathrm{P}=82.86 \mathrm{t}$.
Considering 450ϕ pile
Load bearing capacity of each pile $=37$ MT
Reqd. no. of pile $=2.47$ (say 3)
Let us provide triangular shape of pile cap.
Length of the pile cap $=2250 \mathrm{~mm}$.
$B=2070 \mathrm{~mm}$.
Upward (each) pile pressure $=27.62 \mathrm{MT}$.
B.M. at c.g. of the pile cap $=21.52 \mathrm{t}-\mathrm{m}$.

Let us provide overall depth $=700 \mathrm{~mm}$
' d ' $=601 \mathrm{~mm}$.

CHECK FOR SHEAR :~

$' V$ ' $=55.24 \mathrm{t}$.
$\tau \mathrm{V}=\left[55.24 \times 10^{4}\right] /[1939 \times 601]=0.47 \mathrm{~N} / \mathrm{sq} \mathrm{mm} \quad<K s . \tau \mathrm{c}=0.62 \mathrm{~N} / \mathrm{sq} \mathrm{mm} \mathrm{\&}$
also $<0 r=4 \mathrm{~N} /$ sq mm for punching.
Ast $=\left[21.52 \times 10^{7}\right] /[0.92 \times 230 \times 601]=1693 \mathrm{sq} \mathrm{mm}$
Spacing $=(1939 \times 201) / 1693=230 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
Let us provide 16 tor. Bars @ 175 mm c/c (both ways) at bottom \& 12 tor. Bars @ 175 $\mathrm{mm} \mathrm{c} / \mathrm{c}$ at top (both ways).

Design of R.C.C. pile cap (Gr.- II):-

Total load , $\mathrm{P}=65.07 \mathrm{t}$.
Considering 450ϕ pile
Load bearing capacity of each pile $=37$ MT
Reqd. no. of pile = 1.94 (say 2)
Let us provide rectangular shape of pile cap.
Length of the pile cap $=2250 \mathrm{~mm}$.
$B=700 \mathrm{~mm}$.
Upward (each) pile pressure $=32.54 \mathrm{MT}$.
B.M. at c.g. of the pile cap $=21.96 \mathrm{t}-\mathrm{m}$.

Let us provide overall depth $=700 \mathrm{~mm}$
' d ' $=601 \mathrm{~mm}$
Ast $=\left[21.96 \times 10^{7}\right] /[0.92 \times 230 \times 601]=1727 \mathrm{sq} \mathrm{mm}$
Let us provide 6-20 tor. Bars at bottom \& 6-12 tor. Bars at top.

DESIGN OF SHEAR REINFORCEMENT :~

Design shear force, $\mathrm{V}=325.4 \mathrm{Kn}$.
$\mathrm{Vu}=488.1 \mathrm{Kn}$.
100Ast/(b.d) $=0.448$
$\tau \mathrm{C}=0.46 \mathrm{~N} / \mathrm{sq} \mathrm{mm}$.
Vus $=488.1-(0.46 \times 700 \times 601) / 1000=294.58 \mathrm{Kn}$.
Vus/d = $4.901 \mathrm{Kn} / \mathrm{Cm}$.
Let us provide 10 tor.-4L- vertical stirrups @ 200 c/c throughout the span.

Design of R.C.C. pile cap (Gr.- III):-

Total load , P = 54.55 t .
Considering 450ϕ pile
Load bearing capacity of each pile $=37$ MT
Reqd. no. of pile = 1.62 (say 2)
Let us provide rectangular shape of pile cap.

Length of the pile cap $=2250 \mathrm{~mm}$.
$B=700 \mathrm{~mm}$.
Upward (each) pile pressure $=27.28$ MT .
B.M. at c.g. of the pile cap $=18.41 \mathrm{t}-\mathrm{m}$.

Let us provide overall depth $=700 \mathrm{~mm}$
' d ' $=601 \mathrm{~mm}$
Ast $=\left[18.41 \times 10^{7}\right] /[0.92 \times 230 \times 601]=1448 \mathrm{sq} \mathrm{mm}$
Let us provide 5-20 tor. Bars at bottom \& 5-12 tor. Bars at top.

DESIGN OF SHEAR REINFORCEMENT :~

Design shear force, $\mathrm{V}=272.8 \mathrm{Kn}$.
$\mathrm{Vu}=409.2 \mathrm{Kn}$.
100Ast/(b.d) $=0.373$
$\tau \mathrm{c}=0.41 \mathrm{~N} / \mathrm{sq} \mathrm{mm}$.
Vus $=409.2-(0.41 \times 700 \times 601) / 1000=236.72 \mathrm{Kn}$.
Vus/d = $3.939 \mathrm{Kn} / \mathrm{Cm}$.
Let us provide 8 tor.-4L- vertical stirrups @ $180 \mathrm{c} / \mathrm{c}$ throughout the span.

DESIGN OF R.C.C. BEAM [B1]:-

Design moment, $\mathrm{M}=5.03 \times 10^{7} \mathrm{~N}-\mathrm{mm}$.
$\mathrm{Mu}=7.55 \times 10^{7} \mathrm{~N}-\mathrm{mm}$.
Considering beam size $=250 \times 350 \mathrm{~mm}$.
$' \mathrm{~d}$ ' $=(350-25-8)=317 \mathrm{~mm}$.
Mu,lim. $=2.07 \times 250 \times 317^{2}=5.2 \times 10^{7} \mathrm{~N}-\mathrm{mm}<\mathrm{Mu}$ (Double reinforced).
$\mathrm{Mu} /\left(\mathrm{b} . \mathrm{d}^{2}\right)=3 \mathrm{~N} / \mathrm{sq} \mathrm{mm} . \quad \mathrm{d}^{\prime} / \mathrm{d}=0.1$
$\mathrm{Pt}=1.003 \quad \mathrm{Pc}=0.299$
Ast $=(250 \times 317 \times 1.003) / 100=795 \mathrm{sq} \mathrm{mm}$.
Asc $=(250 \times 317 \times 0.299) / 100=237 \mathrm{sq} \mathrm{mm}$.
Let us provide 4-16 tor. at top \& 2-16 tor at bottom for supports \& 2-16 tor. at top and 4-16 tor. at bottom for span.

DESIGN OF SHEAR REINFORCEMENT :~

Design shear force, $\mathrm{V}=45.1 \mathrm{Kn}$.
$\mathrm{Vu}=67.65 \mathrm{Kn}$.
100Ast/(b.d) $=1.014$
$\tau \mathrm{C}=0.6 \mathrm{~N} / \mathrm{sq} \mathrm{mm}$.
Vus = 67.65-($0.6 \times 250 \times 317) / 1000=20.1 \mathrm{Kn}$.
Vus/d $=0.634 \mathrm{Kn} / \mathrm{cm}$.
Let us provide 8 tor.-2L- vertical stirrups @ $175 \mathrm{c} / \mathrm{c}$ throughout the span.

